

2018 GREAT Group Annual Meeting

Do you know it when you see it? Competency based assessment to guide mentor-mentee communication

Michael F. Verderame

Victoria H. Freedman

Lisa M. Kozlowski

Wayne T. McCormack

Today's presentation for the UF Research & Scholarship Council is adapted from a workshop at the annual meeting of the Association of American Medical Colleges (AAMC) Graduate Research, Education and Training (GREAT) Group

Acknowledgements

We thank the Competencies Working Group and our many colleagues in the AAMC GREAT Group (2013-15), and Drs. Jodi Yellin and Irena Tartakovsky, AAMC for their input and interest in this work

Biomedical Science Graduate Education

PROBLEM

- Historical: PhD education is traditionally an apprenticeship
- When is a graduate student ready? Do you "know it when you see it?"

GOALS

- Define the knowledge, skills and attitudes (KSA) required for a scientist to successfully meet the needs of the profession and of society
- Link to formative assessment

Verderame MF, Freedman VH, Kozlowski LM, McCormack WT. 2018. Competency-based assessment for the training of PhD students and early-career scientists. **eLife** 7:e34801. Available at <u>https://elifesciences.org/articles/34801</u>

Education is a Developmental Process

Model

- Dreyfus and Dreyfus, 1986: model of knowledge and skills acquisition along the continuum of an educational process
 - Novice → Advanced Beginner → Competent → Proficient → Expert
 - Milestones: expectations for the knowledge, skills and attitudes for each competency at each stage

Dreyfus HL, Dreyfus SE. 1986. Mind over machine: The power of human intuition and expertise in the era of the computer. New York, NY: The Free Press.

Sample Assessment Rubric

Dreyfus &	Novice	Advanced Beginner	Competent	Proficient	Expert
Dreyfus Dreyfus Levels of Skill Acquisition	Rule-based behavior, limited, inflexible	Incorporates aspects of the situation	Acts consciously from long-term goals and plans	Sees situation as a whole and acts from personal conviction	Has intuitive understanding of situations, zooms in on central aspects
Science PhD Training Stages	Beginning PhD Student	Advanced PhD Student	Defending PhD Student / Beginning Postdoctoral	Advanced Postdoctoral (in/out of Academia)	Science Professional
	MILESTONES				
Observable Behaviors	discuss, describe, follow	identify, use, explain	design, develop, evaluate	plan, adjust, teach	lead, review, mentor

Core Competencies: Essential Elements Necessary to Earn the PhD Degree

Core competencies

- Broad conceptual knowledge
- Deep knowledge base
- Critical thinking skills
- Life-long learning skills
- Communication skills
- Quantitative skills
- Team science skills
- Data management
- Leadership
- Ethics and the responsible conduct of research

Professional Competencies: Some Skills Align with Specific Career Pathways

not included

Professional Competencies

- Teaching
- Mentoring
- Management
- Entrepreneurship

Competency-Based Assessment

Purposes

- Focus mentoring conversations on research competencies
- Help trainees and mentors identify an individual's progress in each competency
- Support productive mentor-mentee conversations
- Development of an assessment tool
 - Focus on core competencies
 - Milestones: specific expectations (observable behaviors) for the knowledge, skills and attitudes for each core competency
 - Specific milestones mapped to stages of PhD educational development (predoctoral – postdoctoral) for each competency

10 Competencies with 44 Subcompetencies

- 1. Broad Conceptual Knowledge of Biology and Human A. Knowledge base for multiple disciplines
 - B. Broad scientific approaches

2. Deep Knowledge of Specific Field

- A. Historical context of a specific area
- B. Current content expertise in the specific area
- C. Tools and approaches for a specific area
- 3. Critical Thinking Skills and the Scientific Method
 - A. Recognize important questions
 - B. Design a single experiment
 - C. Interpret data
 - D. Design a research program

4. Experimental Skills for Conducting Research

- A. Identify appropriate experimental protocols
- B. Design and execute experimental protocols
- C. Identify and troubleshoot technical issues
- D. Lab safety & regulatory issues
- E. Research records and data storage
- F. Recognition of data ownership
- 5. Computational Skills
 - A. Basic Statistical Analysis
 - B. Bioinformatics literacy

6. Collaboration & Team Science

- A. Openness to collaboration
- B. Self-awareness
- C. Disciplinary awareness
- D. Integration
- E. Team skills

- 7. Responsible Conduct of Research & Research Ethics
 A. Knowledge about RCR
 B. Ethical decision making in RCR
 - C. Moral Courage
 - D. Integrity
- 8. Communication Skills
 - A. Informal Oral Presentation Skills
 - B. Formal Oral Presentation Skills
 - C. Written Communication Scientific Manuscript
 - D. Written Communication Grant Proposals
 - E. Written Communication Meeting Poster
 - F. Communication with the Public

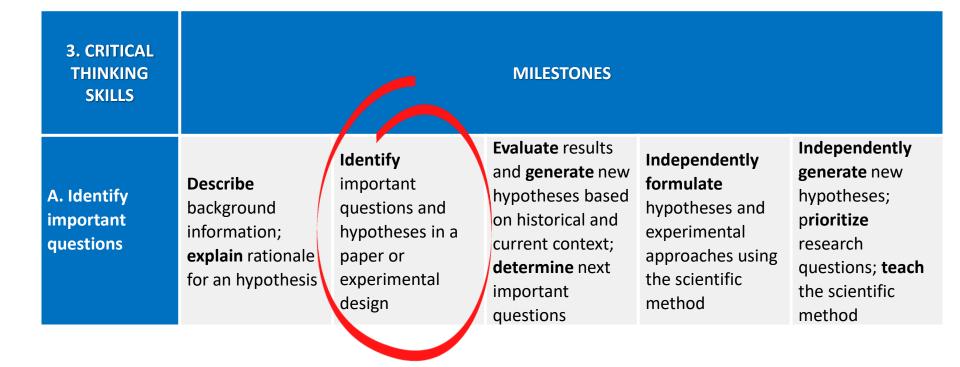
9. Leadership Skills

- A. Vision
- B. Integrity
- C. Group dynamics and interpersonal skills
- D. Organization and planning
- E. Decision-making
- F. Problem-solving
- G. Managing Conflicts

10. Survival Skills

- A. Motivation
- B. Perseverance
- C. Adaptability
- D. Professional Development
- E. Networking

3. CRITICAL THINKING SKILLS	MILESTONES				
A. Identify important questions	Describe background information; explain rationale for an hypothesis	Identify important questions and hypotheses in a paper or experimental design	Evaluate results and generate new hypotheses based on historical and current context; determine next important questions	Independently formulate hypotheses and experimental approaches using the scientific method	Independently generate new hypotheses; prioritize research questions; teach the scientific method


observed on a consistent basis

3. CRITICAL THINKING SKILLS	MILESTONES				
A. Identify important questions	Describe background information; explain rationale for an hypothesis	Identify important questions and hypotheses in a paper or experimental design	Evaluate results and generate new hypotheses based on historical and current context; determine next important questions	Independently formulate hypotheses and experimental approaches using the scientific method	Independently generate new hypotheses; prioritize research questions; teach the scientific method

observed on a consistent basis

3. CRITICAL THINKING SKILLS	MILESTONES				
A. Identify important questions	Describe background information; explain rationale for an hypothesis	Identify important questions and hypotheses in a paper or experimental design	Evaluate results and generate new hypotheses based on historical and current context; determine next important questions	Independently formulate hypotheses and experimental approaches using the scientific method	Independently generate new hypotheses; prioritize research questions; teach the scientific method

observed sometimes, still developing

Mentor and trainee would each do this independently to assess the trainee's progress

Reporting of Self-Assessment & Mentor Assessment

3. Critical Thinking Skills	
A. Identify important questions	0000
B. Design an experiment	$0 \bullet \bullet 0 0$
C. Interpret data	0000
D. Design a research plan	0000
4. Experimental Skills	
A. Identify appropriate experimental protocols	0000
B. Design & execute experimental protocols	0000
C. Identify & troubleshoot technical issues	000
D. Lab safety & regulatory issues	0000
E. Research records & data storage	00000
F. Recognition of data ownership	0000
Trair	nee Faculty Match

Use of Competencies & Milestones

- Inform applicants and new trainees about expectations
- Tool for trainee self-assessment and self-directed learning
- Tool for faculty to assess a trainee progress and support effective mentoring
- Tool for program directors to harmonize learning objectives, expected outcomes, and program assessment

Pilot Testing

- Questions:
 - Calibration of observable behaviors to stages of training
 - Concordance between mentor assessment and trainee self-assessment
 - Support for improved mentor-mentee communication
 - Usefulness for advisory committee members
 - Usefulness of aggregate data for program evaluation

Workshop

- You're invited to participate in a workshop with role play activity to demonstrate the experience of using this assessment
- Workshop TBA at our mutual convenience
- Email <u>mccormac@ufl.edu</u>